Components of an Airborne Measurement Program

Presented By
David Delene
University of North Dakota
Phases of a Measurement Program

- Objectives
- Plan
- Platform
- Instruments
- Data
- Interpretation and Evaluation
Program Phases

Start

Objectives

Plan

Operational

Implementation

Platform

Instruments

Data

Interpretation and Evaluation

Stop
Objectives

• Clear and Quantitative Objectives.
• Rain Enhancement Objectives
 • Ground Water
 • Reservoirs and Hydro-power
 • Domestic and Industrial Use
• Research Objectives
 • Potential of Seeding
 • Effectiveness of Seeding
 • Validate Conceptual Model.
Plan Considerations

- Multidisciplinary and High Technology
- Meteorological Phenomena that is Complex and Covers a Range of Scales
- Unexpected Final Results
- Time and Money Consumer
- Appropriate Technology and Human Resources
Human Resources

• Ideally sufficient human resource would be reserve and available at the beginning of the project.

• Development of Local Personnel
 • Lectures
 • Job “Shadowing”
 • University Based Graduate Education
 • Very Advanced and Technical Field
 • Programming, Math, and Physics
Design of a Plan

- Time Period
- Project Area
- Conceptual Model
- Operational Plan
- Data Collection System
- Evaluation Scheme
 - Physical evaluation the chain of events in the rain process.
 - Statistical evaluation of randomized seeding.
Instruments

- Only deploy instruments for which you are really interested in the measurements.
- Record all “state” parameter for each instrument.
- Calibrate instruments before and after each field project or season.
- Perform calibration “checks” on instruments during the measurement season; however, do not perform calibrations.
Data Processing

- Data Quality Control
 - Calibration Checks
- Data Missing Values Codes
- Levels of Data Processing
 - Raw recorded data.
 - Convert from engineering to physical units.
 - Create single unit instrument data files.
 - Create combined instrument data file.
- Data Quality Assurance
 - Scientist review the data.
 - Scripts look for unrealistic values.
Data: General Comments

• Quick Visualization of data is very Important.
 • Create a preliminary version of the data using automated processing scripts.
 • Create a final dataset after the project is over by applying manual edits to the “raw” data files which replace “bad” data with missing value codes.
• Archive the raw data and any editing files.
• Work with ASCII data as much as possible.
 • Compress ASCII files, if necessary.
• Use a standard data format, which includes Meta data in all data files.
Probe Type: asasp

Probe S/N:
1032-0903-33

Probe Owner:
WMI

Data Taken:
16:12:19.00 to
16:12:25.00
07/20/06

Processed:
07/20/06 16:12:40

Data File:
222nm.cal
What is going on here?
PCASP: Calibration Checks

<table>
<thead>
<tr>
<th>Date</th>
<th>Start [sfm]</th>
<th>End [sfm]</th>
<th>Peak CH</th>
<th>Pre-Peak Counts</th>
<th>Peak Counts</th>
<th>Post-Peak Counts</th>
<th>Size [nm]</th>
<th>Average Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/06/20</td>
<td>6</td>
<td>3450</td>
<td>8921</td>
<td>4047</td>
<td>222</td>
<td>6.03636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/06/20</td>
<td>7</td>
<td>11</td>
<td>2822</td>
<td>404</td>
<td>300</td>
<td>7.12141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/01/20</td>
<td>28100</td>
<td>28600</td>
<td>0.3370</td>
<td>8.5245</td>
<td>0.8995</td>
<td>523</td>
<td>9.05762</td>
<td></td>
</tr>
<tr>
<td>08/01/22</td>
<td>39540</td>
<td>40500</td>
<td>2.3052</td>
<td>1.7979</td>
<td>2.3729</td>
<td>222</td>
<td>6.01045</td>
<td></td>
</tr>
<tr>
<td>08/01/24</td>
<td>44340</td>
<td>44700</td>
<td>100.3500</td>
<td>60.5278</td>
<td>104.0778</td>
<td>222</td>
<td>6.01566</td>
<td></td>
</tr>
<tr>
<td>08/01/24</td>
<td>47040</td>
<td>47700</td>
<td>12.5364</td>
<td>138.1742</td>
<td>21.4970</td>
<td>523</td>
<td>9.05203</td>
<td></td>
</tr>
<tr>
<td>08/01/24</td>
<td>49740</td>
<td>50100</td>
<td>3.9611</td>
<td>10.8306</td>
<td>0.4667</td>
<td>993</td>
<td>11.7710</td>
<td></td>
</tr>
</tbody>
</table>
PCASP: 523 nm Check

08_01_24_11_48_38.counts.pcasp.raw (Time Period: 47040.000 to 47700.000)
PCASP: 222 nm Check

08_01_24_11_48_38.counts.pcasp.raw (Time Period: 44340.000 to 44700.000)

Particle Counts

PCASP Channel Number
PCASP and DMA Comparison

February 6, 2008

![Graph showing particle size distribution](image)

- DMA 12:46:58
- DMA 12:48:32
- DMA 12:49:53
- DMA 12:51:27
- DMA 12:52:48
- PCASP 12:46:00 - 12:54:20
Conclusions

• PCASP is currently not giving reasonable field measurements which has been confirmed by 222nm calibration check.
• The second stage PHA seems to be the problem.
• Performing field calibration checks of all instruments is very important to ensure that the measurements will be useful for analysis and evaluation.
Any Questions?