Evaluation of Mali, West Africa Airborne Measurements to Access the Potential of Enhancing Precipitation using Hygroscopic Seeding

David Delene
Department of Atmospheric Sciences
Research Modification

- Worldwide Water Resource Stresses
- Severe Weather Hazards
- New Observational, Computational, Statistical Technologies
- Operational Programs with Little Scientific Basis
- Population and Demographic Changes
- Inadvertent Weather Modification
Scope of Operational Programs

- Operational programs in more than 37 countries worldwide
Measurement Objectives

• Determine if cloud seeding in Mali could be beneficial.
• Help determine what is the optimal seeding method for enhancing precipitation in the Mali region.
Measurement Importance

- The potential to enhancing precipitation is strongly dependent on the natural microphysics and dynamics of the clouds that are being seeded.
- Cloud properties can vary significantly from one geographical region to another and with the time of year in the same region.
Lower Aerosol Concentrations

- The natural processes of rainfall formation is more efficient.
- Effects from hygroscopic cloud seeding are less effective.
High Dust Concentrations

• The natural processes of rainfall formation is more efficient
• Effects from glaciogenic cloud seeding are less effective.
Quality Control
Quality Assurance
Cloud Condensation Nuclei (CCN) concentrations versus Pressure Altitude measured during decent into Bamako on the September 17, 2007 flight.
Cloud Condensation Nuclei (CCN) concentrations (black line) and Optical Particle Counter (OPC) concentrations measured East of Bamako on September 8, 2007 just below and above cloud base.

367 ± 247
CCN Measurements

<table>
<thead>
<tr>
<th>Location</th>
<th>Time of Year</th>
<th>CCN Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyoming, USA*</td>
<td>Winter</td>
<td>146 ± 20 #/cm(^{-3})</td>
</tr>
<tr>
<td>Wyoming, USA*</td>
<td>Summer</td>
<td>445 ± 157 #/cm(^{-3})</td>
</tr>
<tr>
<td>New Zealand*</td>
<td>Summer</td>
<td>964 ± 17 #/cm(^{-3})</td>
</tr>
<tr>
<td>Bamako, Mali</td>
<td>09/08/07</td>
<td>367 ± 247 #/cm(^{-3})</td>
</tr>
<tr>
<td>Bamako, Mali</td>
<td>Sep. 2007</td>
<td>509 ± 453 #/cm(^{-3})</td>
</tr>
</tbody>
</table>

Cloud Condensation Nuclei (CCN) concentrations at 1% supersaturation measured by a University of Wyoming CCN counter in the lower troposphere at various locations.

<table>
<thead>
<tr>
<th>Location</th>
<th>CCN Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Coast</td>
<td>120 #/cm$^{-3}$</td>
</tr>
<tr>
<td>North Atlantic Ocean</td>
<td>145-370 #/cm$^{-3}$</td>
</tr>
<tr>
<td>High Planes, Montana</td>
<td>290 #/cm$^{-3}$</td>
</tr>
<tr>
<td>Australia, Africa, USA</td>
<td>600 #/cm$^{-3}$</td>
</tr>
<tr>
<td>High Planes, Montana</td>
<td>2000 #/cm$^{-3}$</td>
</tr>
<tr>
<td>Buffalo, New York</td>
<td>3500 #/cm$^{-3}$</td>
</tr>
<tr>
<td>Texas, USA</td>
<td>3000-5000 #/cm$^{-3}$</td>
</tr>
</tbody>
</table>
Conclusions

• Cloud base CCN measurements in Mali during September 2007 show mostly clean continental conditions.

• On many operational cloud seeding days, cloud base CCN concentration are often low in Mali; hence, the natural rainfall formation process is efficient and hygroscopic cloud seeding may have no effect.
Aerosol spectrum measured with a PCASP on September 30, 2007 in Mali. The “Clean” (Blue) spectrum is background aerosol measured between time index 57900 and 57999. The “Flare” (Red) spectrum is a flare plume sampled between time index 58008 and 58012.
Any Questions?
Cloud Condensation Nuclei (CCN) profile over Bamako, Mali on September 18, 2007 over Bamako, Mali. The low concentration profile (left) was measured on ascent (14:30 UTC) and the high concentration profile (right) was measured on descent (17:00).